Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics

	A	PPROVED
	Dean of t	the Faculty
	Dav	letov A.E.
"_	"	20 17.

SYLLABUS Autumn semester 2017-2018 academic year

Academic course information

Discipline's	Discipline's title	Type	No. of ho	urs per wee	Number of	ECTS	
code			Lect.	Pract.	Lab.	credits	
5303 VTS	Introduction to the theory of supersymmetry	Basic	2	1	0	3	5
Lecturer	•	TakibayevN.Zh., d.s.pm., academic of NAS RK, professor		ic Office	hours	Scheduled	
e-mail	E- mail: takibayo	E- mail: takibayev@gmail.com					
Telephone number	Telephone: 292 0396	25-133; E	8-777-704-	Audito	ory	3	19

Academic	Typeofcourse (theoretical, practical; basic, elective) anditspurpose					
presentation of	(roleandplaceofthecourseintheeducationalprogram): TheoreticalNuclearPhysics.					
the course	Theaimofthecourse:togivethestudentsthedeepunderstandingofthemodernphysics					
	ofnucleusofatomsandquantummechanicsofmany-particlesystemsandselfstudy,					
	toform a systemofcompetencesinthecontextofqualificationrequirements: *					
	A) cognitive: beableto - demonstrateacquiredknowledge (specifically)					
	andit'sunderstanding;					
	demonstrateanunderstandingoftheoverallstructureofthestudyfieldandtherelationsb					
	etweenitselements (specifically);					
	B) functional: beableto - includenewknowledgeinthecontextofbasicknowledge,					
	interpretitscontents; - analyzeeducationalsituationandofferdirectiontosolveit; -					
	usemethods (research, calculation, analysis, etc.) inherenttothefieldofstudy					
	(specifically) individually orin a group teaching and research activities; **					
	C) systemic: beableto - synthesize,					
	interpretandevaluatethelearningoutcomesofdiscipline, modules,					
	midtermexamcontent (specifically); makeananalysisofD) Social: beableto -					
	constructiveeducationalandsocialinteractionandcooperationinthegroup; -					
	proposetoconsider a problem, toreasonitsimportance; -					
	accepteriticismandtocriticize; - workin a team;					
	E) metacompetences: beableto -					
	recognizetheroleoftakencourseintheimplementationofindividuallearningpaths.					
	*Thesystemofdescriptorverbsmustbeusedduringtheformationofcompetences					
	(LookinApplication 2)					

	**Activeandinteractivemethodsisrecommendedtoensuredeeperunderstandingandl				
	earningofeducationalmaterialandtoachievelearningoutcomesofthecourse				
	(individualresearches, groupprojects, casestudiesandothermethods).				
Prerequisites	Mathematical analysis, the theory of functions of complex variables, differential				
	equations, mathematical physics, statistical physics, physics of elementary				
	particles.				
Post requisites	Actual problems of physics and ecology, trends in the development of				
1	technology and environmental problems, Problems of energy and				
	nanotechnologies, Modern problems of space ecology and physics.				
Information	Literature :				
resources	1. M. Kaku: Introduction to superstrings and M- Theory, Springer, 624 (1999).				
	2. J. Wess, J. Bagger: Supersymmetry and Supergravity, Princeton University				
	Press (1992).				
	3. E. Witten, "Constraints on supersymmetry breaking", Nucl. Phys. B202 ,				
	253(1982).				
	4. S.P. Martin, "A supersymmetry primer", ArXiv:hep-ph/9709356.				
	5. <i>J.D. Lykken</i> , "Introduction to supersymmetry", ArXiv:hep-th/9612114.				
	6. A. Bilal, "Introduction to Supersymmetry", ArXiv:hep-th/0101055.				
	7. D.I. Kazakov, «Supersymmetric expansion of the Standard model of				
	fundamental interactions», the works of the summer school of the «Dynasty»				
	foundation «Physics of fundamental interactions», (2006).				
	8. M. Shifman, A. Vainshtein, "Instantons Versus Supersummetry: Fifteen years				
	later,"ArXiv:hep-th/9902018. Internet resources:				
	1. Krasnikov N V, Matveev V A hep-ph/9703204				
	2. Y.A. Golfand, E.P. Likhtman, JETP Lett. 13 452 (1971)				
	3. Volkov D V, Akulov V P <i>Phys. Lett. B</i> 46 109 (1973)				
	3. VOIKOV D V, AKUIOV V P Phys. Lett. B 46 109 (1973) 4. Wess J, Zumino B Nucl. Phys. B 70 39(1974)				
Academic	Academic Behavior Rules:				
policy of the	Compulsory attendance in the classroom, the impermissibility of late attendance.				
course in the	Without advance notice of absence and undue tardiness to the teacher is				
context of	estimated at 0 points.				
	Academic values:				
university moral and					
ethical values	Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge control, and disrespectful attitude towards teachers. (The code of KazNU				
euncai values					
E14'1	Student's honor) Crite ria-based evaluation:				
Evaluation and					
attestation	Assessment of learning outcomes in correlation withdescriptors (verification of				
policy	competence formation during midterm control andexaminations).				
	Summative evaluation:				
	evaluation of the presence and activity of the work in the classroom; assessment				
	of the assignment, independent work of students, (project / case study / program				
	[/)				

Calendar (schedule) the implementation of the course content:

Weeks	of students)	Numbe r of	Maximum score	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		hours		
Module 1				

1	Lecture-1 (L-1). Continuous integrals and point particles.	2	-		
	Seminar -1 (S-1).Relativistic point particles.	1	8		
2	L-2.Secondary quantization.Harmonic oscillators.	2	-		
	S-2.Currents and secondary quantization.	1	8		
3	L-3. The strings of Nambu-Goto.	2	-		
	S-3.Boson strings.	1	8		
	SSW-3.Quantization in the calibration of a light cone.	1	8		
4	L-4. Two-dimensional supersymmetry.	2	-		
	S-4. Closed strings.	1	8		
	SSW-4. Destruction of spirits.	1	8		
	Module 2	1			
5	L-5. Supersymmetry	2	-		
	S-5. Supersymmetric point particles.	1	8		
	SSW-5. Quantization.	1	8		
6	L6.Two-dimensional supersymmetry.Trees.	2	-		
	S6. Local two-dimensional supersymmetry.	1	8		
	SSW-6.Superstrings.	1	8		
7	L7.Conformal field theory and the Kac-Moody algebra.	2	-		
	S7. Conformal field theory.	1	8		
	SSW-7.Superconformal field theory.	1	12		
	1stInterme diate Control (IC1)		100		
8	Midterm (MT)		100		
	L-8.Fermion vertex operator. Spinors and trees.	2	-		
	S-8.The Kac-Moody algebras.	1	8		
	SSW-8. Supersymmetry.	1	6		
Module 3					
9	L-9. Multi- loop amplitudes and Teichmüller spaces.	2	-		
	S-9. Unitarity. One-loop amplitudes.	1	8		
	SSW-9. Harmonic oscillators.	1	6		
10	L-10. Field theory in the calibration of the light cone.	2	-		
	S-10. Derivation of the field theory of point particles.	1	6		
	SSW-10. Field theory of superstrings.	1	6		
11	L-11. Field theory of BRST.	2	-		
	S-11.Covariant field string theory.	1	6		

	Exam		100
	2ndInterme diate Control (IC2)		100
	SSW-15. Review of the theory of supersymmetry.	1	6
	S-15. Four-dimensional superstrings.	1	6
15	L-15.On the theory of supersymmetry.	2	-
	SSW-14. A ten-dimensional theory without supersymmetry	1	6
	formulations.		
	S-14.Spectrum of states. Covariant and fermion	1	6
14	L-14.Heterotic strings and compactification.	2	-
	SSW-13. Reduction of anomalies in string theory.	1	6
	S-13. Anomalies and Feynman diagrams.	1	6
13	L-13. Anomalies and the Atiyah-Singer theorem.	2	-
	SSW-12. Geometrical output of the action.	1	6
	S-12String group.	1	6
12	L-12.Geometric field string theory.	2	-
	SSW-11. Closed strings and superstrings.	1	6

Independent work of students with teacher is 7 hours for semester. 3, 5, 7, 9, 11, 13 and 15 weeksareincludedintosyllabus (assignmentsubmission)

Lecturer	l akıbayevN.Zh.		
Head of the Department		Abishev M.E.	
Chairman of the Faculty Met	hodical Bureau_		A.T.Gabdullina